Observation of a two-proton halo in 17 Ne

R. Kanungo^{1,a}, M. Chiba¹, B. Abu-Ibrahim², S. Adhikari^{3,4}, D.Q. Fang⁵, N. Iwasa⁶, K. Kimura⁷, K. Maeda⁶,

S. Nishimura¹, T. Ohnishi¹, A. Ozawa⁸, C. Samanta^{3,4}, T. Suda¹, T. Suzuki⁹, Q. Wang¹⁰, C. Wu¹⁰, Y. Yamaguchi¹,

K. Yamada¹, A. Yoshida¹, T. Zheng¹⁰, and I. Tanihata^{1,b}

¹ RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan
² Department of Physics, Cairo University, Giza 12613, Faynt

- ² Department of Physics, Cairo University, Giza 12613, Egypt
 $\frac{3}{2}$ Saka Institute of Nuclear Physics, $\frac{1}{4}$ E. Bidharnagen, Kall
- ³ Saha Institute of Nuclear Physics, $1/AF$, Bidhannagar, Kolkata 700064, India
⁴ Virginia Commonwealth University, Bighmond, VA 23284, USA
- ⁴ Virginia Commonwealth University, Richmond, VA 23284, USA
 $\frac{5}{5}$ Sanghai Institute of Nueleer Beseereb, Chinese Asademy of Sai
- ⁵ Sanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, PRC
⁶ Department of Bhysics, Tabaku University, Miyesi 080,8578, Japan
- ⁶ Department of Physics, Tohoku University, Miyagi 980-8578, Japan $\frac{7}{4}$ Department of Flastnia Electronics and Computer Engineering. No
- ⁷ Department of Electric, Electronics and Computer Engineering, Nagasaki Institute of Applied Science, Nagasaki 851-0193, Japan
- 8 Institute of Physics, University of Tsukuba, Ibaraki, 305-8571, Japan
- ⁹ Department of Physics, Saitama University, Saitama 338-8570, Japan
- ¹⁰ Department of Technical Physics, Peking University, Beijing 100871, PRC

Received: 15 November 2004 / Published online: 3 August 2005 – \copyright Società Italiana di Fisica / Springer-Verlag 2005

Abstract. The measurement of longitudinal momentum distribution for two-proton removal from the proton-drip line nucleus 17 Ne with a Be target at 64 A MeV is reported. The observed narrow momentum distribution and the large interaction cross-section suggests the formation of a two-proton halo. The data analyzed within the Few-body Glauber model suggests a significant probability of the two valence protons to abnormally occupy the $2s_{1/2}$ orbit, indicating its lowering in proton-rich nuclei.

PACS. 25.60.Dz Interaction and reaction cross-sections – 25.60.Gc Breakup and momentum distributions

1 Introduction

The first observations on neutron halos were for Bor-romean nuclei (⁶He, ¹¹Li) [\[1\]](#page-2-0) which have a two-neutron halo structure. A two-proton halo has however not been observed so far. It is thus interesting to search for their possible existence which is reported in this article.

The investigation involved a simultaneous study of the longitudinal momentum distribution $(P_{||})$ from twoproton removal and the interaction cross-section (σ_I) . A possible candidate seemed to be 17 Ne, the lightest borromean nucleus at the proton drip-line. It has a small two-proton separation energy $(S_{2p} = 0.96 \text{ MeV})$. A normal shell model places the valence protons in the $d_{5/2}$ orbital giving rise to a wide momentum distribution and a small two-proton removal cross-section. An abnormal occupancy of the protons in the $2s_{1/2}$ orbital will lead to a narrow momentum distribution with a large cross-section.

The earliest studies on the nucleus observed a large asymmetry in the beta decay strength of 17 Ne and its mirror partner $17N$ [\[2\]](#page-2-1). This asymmetry could be explained [\[3\]](#page-3-0) through an enhanced s-wave component in the ground state of ¹⁷Ne compared to ¹⁷N. The amount of enhancement was however not significantly large and the ground state wave function of 17 Ne was considered to be dominated by the normal d-wave nature. The work on Coulomb energy [\[4\]](#page-3-1) also reached similar conclusions. Some other recent theoretical investigation [\[5\]](#page-3-2) however suggests a larger s-wave probability of the valence protons. A large s-wave strength is also expected from the observed large interaction cross-section [\[6\]](#page-3-3) which requires detailed interpretation. The situation is thus unclear and new experimental information may help to shed more light on it.

2 Experiment and analysis

The experiment for P_{\parallel} was performed using the new direct time-of-flight (TOF) technique [\[7\]](#page-3-4). The secondary beam of ¹⁷Ne interacted with a secondary Be target, with an energy of 60 A MeV. The fragment ¹⁵O after two-proton

Conference presenter; Present address: TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada; e-mail: ritu@triumf.ca

^b Present address: Argonne National Laboratory, 9700S Cass Avenue, Argonne, IL 60439, USA.

Fig. 1. Longitudinal momentum distribution data of ^{15}O fragments from ¹⁷Ne. The curves are Glauber model calculations for model-1 as explained in the text. The dash-dotted line is the data for $^{15}O \rightarrow ^{13}O$ normalized to the peak of $^{17}Ne \rightarrow ^{15}O$ data. The shaded region is the uncertainity from the twoproton removal cross-section.

removal was detected and its P_{\parallel} distribution was measured converting to the projectile rest frame. The experimental details are described in ref. [\[8\]](#page-3-5).

The P_{\parallel} distribution of ^{[1](#page-1-0)7}Ne \rightarrow ¹⁵O shown in fig. 1 (black points) is found to have a very narrow width of 168 ± 17 MeV/c (FWHM) compared to the Goldhaber estimate of $\sim 290 \text{ MeV}/c$. A large two-proton removal crosssection of 191±48 mb is also observed. In comparison, the two-proton removal cross-section of 15 O is 54 ± 14 mb [\[9\]](#page-3-6). For a comparison on the change of valence proton P_{\parallel} distribution we also measured the P_{\parallel} distribution for twoproton removal from the core nucleus, *i.e.* $^{15}O \rightarrow ^{13}O$. The data (dash-dotted line in fig. [1\)](#page-1-0) shows nearly two times wider distribution than 17Ne [\[9\]](#page-3-6). This suggests a halo formation 17 Ne, showing the two valence protons in ¹⁷Ne to have a significant probability of being outside the $^{15}\mathrm{O}$ core.

The data is analysed in the framework of the few-body Glauber model, considering two possibilities for fragmentation. In the first approach (model-1) we consider the fragmentation process to arise from the emission of two uncorrelated protons. ¹⁷Ne has a model of ¹⁵O core + two uncorrelated protons. The solid curve here shows the momentum distribution from such a fragmentation process considering the two valence protons to occupy only the $2s_{1/2}$ orbital. It agrees with the data within the error bars. The dashed line shows the distribution for condition where the two valence protons occupy the $d_{5/2}$ orbital. This is both small in magnitude and wider than the data. We have considered the mixing of these s and d configurations where S_1 is the probability of finding two protons in the s-orbital. $S_1 = 1$ denotes a pure s-wave configuration while $S_1 = 0$ denotes a pure d-wave configuration. The dotted line represents $S_1 = 0.65$. It is seen that the data can be explained by a 65% -100% s-wave probability of the valence protons. This is favorable for a halo formation in $17Ne$.

In the second approach (model-2), we consider the possibility of proton evaporation from 17 Ne. In this process, first one proton is knocked out from the ¹⁷Ne nucleus and this leads to a resonance in the unbound 16 F. It then decays to ¹⁵O by another proton emission. In the first knockout step, the valence proton from the s or d orbitals can be removed. Besides, there exists some probability of proton removal from the deeply bound p orbitals populating much higher resonance states in ¹⁶F. The individual contributions for proton removal from the s, p, d , orbitals are shown in fig. [2a](#page-2-2) by solid, dotted and dashed lines, respectively. They do not agree with the measured distribution.

Next we consider a mixed probability of proton removal for the proton evaporation process. Here we have an additional spectroscopic factor S_3 for the p-wave proton knockout. It assumes values from zero to 3 independent of S_1 (because this is only the probability of knockout and not a part of the 17 Ne wave function description). $S_3 = 3$ represents the conditions where a total of 6 p-wave protons can contribute to the two-proton knockout. Figure [2b](#page-2-2) summarizes the result of a mixed emission probability which can explain simultaneously the P_{\parallel} width and the cross-section for two-neutron removal. The shaded region in fig. [2b](#page-2-2) shows the S_1 and S_3 values which are in agreement with these data. It is seen that $S_3 > 1.0$ is needed for ovelap with the data, showing that emission of more than 2 protons is necessary. This means, that emission from the $p_{3/2}$ orbital is needed. Thus, within this framework a $20\% - 50\%$ s-wave probability of valence protons in ¹⁷Ne is suggested. A 50% s-wave probability is suggestive of a moderate halo formation.

To confirm on the structure of 17 Ne we need to now interpret the measured σ_I for this nucleus. Weighted average of data from ref. [\[6\]](#page-3-3) when analysed in a Glauber model framework considering core + two-uncorrelated-proton structure for ¹⁷Ne, suggest $S_1 = 0.75$ -1.0 [\[8\]](#page-3-5). The shaded band in fig. [3](#page-2-3) shows that $S_1 = 0.7{\text -}1.0$ is the region of swave which consistently explains both the P_{\parallel} and σ_{I} data.

3 Discussion

The narrow P_{\parallel} distribution data from two-proton removal and the large interaction cross-section taken together are suggestive of a two-proton halo formation. A consistent description of these data in a core $+p+p$ Glauber model requires a large s-wave probability of the protons.

The extent of the two-proton halo is shown in fig. [4,](#page-2-4) which demonstrates the percentage of the two-proton density outside the distance "r" measured from the center of the nucleus. The boundary of the core is defined as the radial distance beyond which only 10% of the core density exists. The vertical shaded line shows this distance. The two-proton density is shown by dashed (solid) line for $S_1 = 0.0$ (1.0). From the above analysis the s-wave probability in ¹⁷Ne is $S_1 \sim 0.7$. It is then found that the valence protons have around 60% probability of residing outside

Fig. 2. (a) The longitudinal momentum distribution of 15 O fragments from 17 Ne. The curves are results of proton evaporation as explained in the text. (b) The range of S_1 and S_3 which overlaps with both the P_{\parallel} and σ_{-2p} data.

Fig. 3. Summary of s-wave probability of the two valence protons from the different analysis. The shaded vertical band shows the region of consistency between interaction crosssection and momentum distribution.

the core. A similar analysis for the two-neutron halo nucleus 11 Li [\[10\]](#page-3-7) shows 73% of the two-neutrons being outside the 9 Li core (considering the 11 Li ground state to have an equal mixture of s and p wave configurations). In contrast, well-bound nuclei like ¹⁵O or ¹⁷N, show only 38% of the valence nucleon to be outside the core (the "core" nuclei here are 13 O and 15 N, respectively). It is certainly true that proton halos are far less pronounced than neutron halos. Nevertheless, that fact that despite the Coulomb barrier, the s-orbit is lowered even in proton-rich drip-line nuclei, causes them to have spatial extension compared to well-bound normal nuclei. Evidence for the lowering of the $2s_{1/2}$ orbit can also be noted in neighbouring nucleus ¹⁶F.

Fig. 4. The probability of the two valence protons to be outside $\frac{1}{15}$ O core for 17 Ne. The dotted line shows the percentage of density of 15 O outside "r". The dashed/solid line shows the percentage of two-proton density for protons in the $d_{5/2}/2s_{1/2}$ orbit.

It may be mentioned here that further interpretation with a microscopic correlated wave function for 17 Ne maybe useful for obtaining deeper insights. In addition, some alternative experimental investigation would help to put further constraint on the s-wave probability.

References

- 1. I. Tanihata et al., Phys. Lett. B 160, 380 (1985); Phys. Rev. Lett. 55, 2676 (1985).
- 2. M.J.B. Borge et al., Phys. Lett. B 317, 25 (1993); A. Ozawa et al., J. Phys. G 24, 143 (1998).
- 3. J.D. Millener, Phys. Rev. C 55, R1633 (1997).
- 4. H.T. Fortune, R. Sherr, Phys. Lett. B 503, 70 (2001).
- 5. L.V. Grigorenko et al., Nucl. Phys. A 713, 372 (2003).
- 6. A. Ozawa et al., Phys. Lett. B 334, 18 (1994).
- 7. R. Kanungo et al., Phys. Rev. Lett. 88, 142502 (2002).
- 8. R. Kanungo et al., Phys. Lett. B 571, 21 (2003).
- 9. H. Jeppesen et al., Nucl.Phys. A 739, 57 (2004).
- 10. R. Kanungo, Nucl. Phys. A 738, 293 (2004).